Volume 15, Issue 4 (Jul-Aug 2021)                   mljgoums 2021, 15(4): 39-44 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khodamoradi S, Shahhosseiny M H, Mohammadian T, Ferdousi A. Evaluation of Role of Herpes Simplex Virus Types 1 and 2 and Cytomegalovirus in Alzheimer's Disease. mljgoums 2021; 15 (4) :39-44
URL: http://mlj.goums.ac.ir/article-1-1347-en.html
1- Department Of Microbiology, Shahr-e-Qods Branch- Islamic Azad University, Tehran, Iran
2- Department Of Microbiology, Shahr-e-Qods Branch- Islamic Azad University, Tehran, Iran , shahhosseiny@qodsiau.ac.ir
Abstract:   (1648 Views)
Background and objectives: Different environmental factors, such as infection, can cause Alzheimer's disease (AD). Herpes simplex virus types 1 (HSV1) and 2 (HSV2) and cytomegalovirus (CMV) are related to AD. This study explores the potential role of HSV1, HSV2 and CMV in AD progression.
Methods: Plasma samples were taken from 100 AD patients (47 women and 53 men). After isolating viral DNA, PCR was performed using specific primers for the detection of the viruses.  
Results: The prevalence of CMV, HSV1 and HSV2 was 27%, 8% and 4%, respectively. Although CMV was most prevalent in AD patients, HSV1 and HSV2 were found in patients with advanced AD. The prevalence of HSV1 and HSV2 was significantly associated with dysphoria, hallucination, insomnia and depression (P˂0.05), while CMV was significantly associated with hallucination and dysphoria (P=0.001). AD symptoms were higher in patients with HSV1 and HSV2.
Conclusion: It seems that HSV and CMV infections may be related to the severity of AD. 
Full-Text [PDF 706 kb]   (445 Downloads) |   |   Full-Text (HTML)  (978 Views)  
Research Article: Original Paper | Subject: Microbiology
Received: 2020/11/30 | Accepted: 2021/02/7 | Published: 2021/06/30 | ePublished: 2021/06/30

References
1. Alzheimer A. Über eine eigenartige erkrankung der hirnrinde. Allg Z Psychiatr. Psychisch Gerichtl. Medcine. 1970; 64: 146-148. [View at Publisher] [Google Scholar]
2. Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde". Clinical Anatomy. 1995; 8: 429-431. [DOI:10.1002/ca.980080612] [PubMed] [Google Scholar]
3. Esiri MM. Herpes simplex encephalitis. An immunohistological study of the distribution of viral antigen within the brain. J Neurol Sci. 1982 May;54(2):209-26. [View at Publisher] [DOI:10.1016/0022-510X(82)90183-6] [PubMed] [Google Scholar]
4. Sohrab SS, Suhail M, Ali A, Kamal MA, Husen A, Ahmad F, Azhar EI, Greig NH. Role of viruses, prions and miRNA in neurodegenerative disorders and dementia. Virusdisease. 2018; 29(4): 419-433. [DOI:10.1007/s13337-018-0492-y] [PubMed] [Google Scholar]
5. Fulop T, Witkowski JM, Bourgade K, Khalil A, Zerif E, Larbi A, et al. Can an Infection Hypothesis Explain the Beta Amyloid Hypothesis of Alzheimer's Disease? Front Aging Neurosci. 2018; 10: 224. [DOI:10.3389/fnagi.2018.00224] [PubMed] [Google Scholar]
6. Ball MJ. Limbic predilection in Alzheimer dementia: Is reactivated herpes virus involved? Canadian Journal of Neurology Science. 1982; 9: 303-306. [DOI:10.1017/S0317167100044115] [PubMed] [Google Scholar]
7. Kristen H, Santana S, Sastre I, Recuero M, Bullido MJ, Aldudo J. Herpes simplex virus type 2 infection induces AD-like neurodegeneration markers in human neuroblastoma cells. Neurobiology Aging. 2015; 36(10): 2737-47. [DOI:10.1016/j.neurobiolaging.2015.06.014] [PubMed] [Google Scholar]
8. Dupuis M, Hull R, Wang H, Nattanmai S. Molecular detection of viral causes of encephalitis and meningitis in New York State. Journal of Medicine Virology. 2011; 12(83): 2172-81. [View at Publisher] [DOI:10.1002/jmv.22169] [PubMed] [Google Scholar]
9. Hanger DP, Lau DH, Phillips EC, Bondulich MK, Guo T, Woodward BW. Intracellular and extracellular roles for tau in neurodegenerative disease. Journal of Alzheimer's Disease. 2014; 40(Suppl. 1): S37-S45. [DOI:10.3233/JAD-132054] [PubMed] [Google Scholar]
10. Olsson J, Lovheim H, Honkala E, Karhunen PJ, Elgh F, Kok EH. HSV presence in brains of individuals without dementia: the TASTY brain series. Disease Models & Mechanisms. 2016; 9(11): 1349-55. [View at Publisher] [DOI:10.1242/dmm.026674] [PubMed] [Google Scholar]
11. Steel AJ, Eslick GD. Herpes Viruses Increase the Risk of Alzheimer's Disease: A Meta-Analysis. J Alzheimers Dis. 2015;47(2):351-64. [DOI:10.3233/JAD-140822] [PubMed] [Google Scholar]
12. Lovheim H, Olsson J, Weidung B, Johansson A. Interaction between Cytomegalovirus and Herpes Simplex Virus Type 1 Associated with the risk of Alzheimer's Disease Development. Journal of Alzheimer's Disease. 2017; 61(3): 1. [DOI:10.3233/JAD-161305] [PubMed] [Google Scholar]
13. Perkins D. Targeting apoptosis in neurological disease using the herpes simplex virus. Journal of Cellular and Molecular Medicine. 2002; 6(3): 341-356. [DOI:10.1111/j.1582-4934.2002.tb00513.x] [PubMed] [Google Scholar]
14. Anthony IC, Ramage SN, Carnie FW, Simmonds P, Bell JE. Accelerated tau deposition in the brains of individuals infected with human immunodeficiency virus-1 before and after the advent of highly active anti-retroviral therapy. Acta Neuropathology. 2006; 111: 529-538. [View at Publisher] [DOI:10.1007/s00401-006-0037-0] [PubMed] [Google Scholar]
15. Barnes L, Capuano A, Aiello A, Turner A, Yolken R, Torrey EF, Bennett D. Cytomegalovirus Infection and Risk of Alzheimer Disease in Older Black and white Individuals. Journal of Infection Disease. 2015; 211: 230. [DOI:10.1093/infdis/jiu437] [PubMed] [Google Scholar]
16. Tudorache IF, Trusca VG, Gafencu AV. Apolipoprotein E-A Multifunctional Protein with Implications inVarious Pathologies as a Result of Its Structural Features. Computational and Structural Biotechnology Journal. 2017; 15: 359-65. [DOI:10.1016/j.csbj.2017.05.003] [PubMed] [Google Scholar]
17. Tarter KD, Simanek AM, Dowd JB, Aiello AE. Persistent viral pathogens and cognitive impairment across the life course in the third national health and nutrition examination survey. Journal of Infection Disease. 2014; 209: 837-844. [DOI:10.1093/infdis/jit616] [PubMed] [Google Scholar]
18. Varani S, Landini MP. Cytomegalovirus-induced immunopathology and its clinical consequences. Herpesviridae. 2011; 2: 6. [DOI:10.1186/2042-4280-2-6] [PubMed] [Google Scholar]
19. Licastro F, Porcellini E. Persistent infections, immune-senescence and Alzheimer's disease. Oncoscience. 2016; 3(5-6): 135-42. [DOI:10.18632/oncoscience.309] [PubMed] [Google Scholar]
20. Itzhaki RF. Herpes simplex virus type 1 and Alzheimer's disease: possible mechanisms and signposts. The FASEB Journal. 2018; 31: 3216-26. [DOI:10.1096/fj.201700360] [PubMed] [Google Scholar]
21. Markoulatos P, Georgopoulou A. Laboratory Diagnosis of Common Herpesvirus Infections of the Central Nervous System by a Multiplex PCR Assay. Journal of Clinical Microbiology. 2001; 39(12): 4426-32. [DOI:10.1128/JCM.39.12.4426-4432.2001] [PubMed] [Google Scholar]
22. Terry RD, Masliah E, Salmon DP, Butters N, and DeTeresa R, Hill R. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Annals Neurology. 1991; 30: 572-580. [DOI:10.1002/ana.410300410] [PubMed] [Google Scholar]
23. Itzhaki RF. Herpes and Alzheimer's disease: Subversion in the Central Nervous System and How It Might Be Halted. Journal of Alzheimer's Disease. 2016; 54: 13-3721. [DOI:10.3233/JAD-160607] [PubMed] [Google Scholar]
24. Gholamzadeh S, Heshmati B, Mani A, Petramfar P, Baghery Z. The prevalence of Alzheimer's disease; its risk and protective factors among the elderly population in Iran. Shiraz E-Medical Journal. 2017; 18(9): e57576. [View at Publisher] [DOI:10.5812/semj.57576] [Google Scholar]
25. Taylor-Wiedeman J, Sissons JG, Borysiewicz LK, Sinclair JH. Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol. 1991; 72 ( Pt 9): 2059-64. [DOI:10.1099/0022-1317-72-9-2059] [PubMed] [Google Scholar]
26. Baringer JR, Pisani P. Herpes simplex virus genomes in human nervous system tissue analyzed by polymerase chain reaction. Annals of Neurology. 1994; 36: 823-829. [View at Publisher] [DOI:10.1002/ana.410360605] [PubMed] [Google Scholar]
27. Lurain NS, Hanson BA, Martinson J, Leurgans SE, Landay AL, Bennett DA, Schneider JA. Virological and immunological characteristics of human cytomegalovirus infection associated with Alzheimer disease. J Infect Dis. 2013; 208(4): 564-72. [DOI:10.1093/infdis/jit210] [PubMed] [Google Scholar]
28. Olsen I, Singhrao SK. Can oral infection be a risk factor for Alzheimer's disease? Journal of Oral Microbiology. 2015; 7: 29143. [DOI:10.3402/jom.v7.29143] [PubMed] [Google Scholar]
29. Hogestyn JM, Mock DJ, Mayer-Proschel M. Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology. Neural Regeneration Research. 2018; 13(2): 211-21. [DOI:10.4103/1673-5374.226380] [PubMed] [Google Scholar]
30. woods AG. HSV Linked to Alzheimer Disease. Neurology Live. 2014. [View at Publisher]
31. Mancuso L, Cao G. Acute toxicity test of CuO nanoparticles using human mesenchymal stem cells. Toxicology Mechanisms and Methods. 2014; 24: 449-454. [DOI:10.3109/15376516.2014.928920] [PubMed] [Google Scholar]
32. Bourgade K, Dupuis G, Frost EH, Fulop T. Anti-Viral Properties of Amyloid-beta Peptides. Journal of Alzheimer's Disease. 2016; 54(3): 859-78. [DOI:10.3233/JAD-160517] [PubMed] [Google Scholar]
33. Tabarraei H, Hassanb J, Parvizia MR, Golshahic H, Keshavarz-Tarikhi H. Evaluation of the acute and sub-acute toxicity of the black caraway seed essential oil in Wistar rats. Toxicology Reports 2019; 6: 869-874. [View at Publisher] [DOI:10.1016/j.toxrep.2019.08.010] [PubMed] [Google Scholar]
34. Tabarraei H, Hassanb J, Sadat Mosavi S. Determination of LD50 of some essential oils and histopathological changes in short-term exposure to one of them in rainbow trout (Oncorhynchus mykiss). Toxicology Research and Application. 2019; 3:1-7. [View at Publisher] [DOI:10.1177/2397847318820719] [Google Scholar]
35. Emami S, Olfati A. Effects of dietary supplementing of Spirulina platensis and Chlorella vulgaris microalgae on hematologic parameters in streptozotocin-induced diabetic rats. Iranian Journal of Pediatric Hematology and Oncology 2017; 7(3):163-170. [View at Publisher] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.