Volume 12, Issue 2 (Mar-Apr 2018)                   mljgoums 2018, 12(2): 7-12 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahraki Zahedani S, sayadzai N. Frequency and Antibiotic Resistance Pattern of Diarrheagenic Escherichia coli (DEC) Strains Isolated from Children Aged Less Than 10 Years. mljgoums 2018; 12 (2) :7-12
URL: http://mlj.goums.ac.ir/article-1-1063-en.html
1- Department of Microbiology, School of Medicine, Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
2- Department of microbiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
Abstract:   (15427 Views)
ABSTRACT
             Background and Objectives: Diarrheagenic Escherichia coli (DEC) pathotypes are important causes of diarrhea among children in developing countries. The objective of this study was to determine the frequency and antibiotic resistance pattern of DEC pathotypes in children aged less than 10 years.
             Methods: This cross-sectional study was done on 300 E. coli strains isolated from diarrheic stool samples of children aged less than 10 years who were admitted to hospitals and central laboratory in Zahedan, between July and October 2016. DEC pathotypes were identified by standard biochemical testing and phenotypic testing using polyvalent antiserums. Antibiotic resistant pattern of these strains was evaluated against 11 different antibiotics by the agar disk diffusion method according to the Clinical and Laboratory Standards Institute guidelines.
             Results: Of the 300 E. coli isolates, 89 (29.6%) were found positive for DEC using polyvalent antiserums. In this study, 35 cases (39.3%) reacted with antiserum 1, 21 cases (25.8%) reacted with the antiserum 2, and 31 cases (34.8%) reacted with antiserum 3. The highest rate of resistance was observed against ampicillin (94.8%), tetracycline (87.2%), and co-trimoxazole (70.5%). In addition, the lowest rate of resistance was related to imipenem (1%) and ciprofloxacin (8.9%).
             Conclusion: DEC pathotypes are the important causes of diarrhea among children admitted to hospitals of Zahedan. Considering the high rate of antibiotic resistance among these pathotypes in this region, prescription of antibiotics should be based on accurate detection of these strains.
             Keywords: Escherichia coli, Child, Antibiotic Resistance.
Full-Text [PDF 583 kb]   (1629 Downloads)    
Research Article: Original Paper |
Received: 2018/03/14 | Accepted: 2018/03/14 | Published: 2018/03/14 | ePublished: 2018/03/14

References
1. Saremi A, Shahrjerdi Sh, Kavyani A. The Effect of Aerobic Training on Metabolic Parameters and 1SerumLevel of Sirtuin1 in Women with Type 2 Diabetes. AMUJ. 2016; 19(114): 88-97.
2. Dehghan F, Soori R, Gholami Kh, Abolmaesoomi M, Yusof A, Muniandy S, et al. Purslane (Portulaca oleracea) Seed Consumption And Aerobic Training Improves Biomarkers Associated with Atherosclerosis in Women with Type 2 Diabetes (T2D). Sci Rep. 2016; 6: 3781. doi: 10.1038/srep37819. [DOI:10.1038/srep37819]
3. Colak Y, Yesil A, Huseyin Mut H , Caklili O, Ulasogl C, Senates E, et al. A Potential Treatment of Non-Alcoholic Fatty Liver Disease with SIRT1 Activators. Review J Gastro intestin Liver Dis 2014; 23(3): 311-319. doi: 10.15403/jgld.2014.1121.233.yck. [DOI:10.15403/jgld.2014.1121.233.yck]
4. Matthew P, Maya E. Sirt1 Regulates Adipose Tissue Inflammation. Diabetes 2011;60(12): 3235-3245. doi: 10.2337/db11-0616. [DOI:10.2337/db11-0616]
5. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004; 429(6993): 771– 776. [DOI:10.1038/nature02583]
6. Oh K.J, Lee DS, Kim WK, Han BS, Lee SC, Bae K-H. Metabolic Adaptation in Obesity and Type II Diabetes: Myokines, Adipokines and Hepatokines. Int J Mol Sci. 2016;18(1). pii: E8. doi: 10.3390/ijms18010008. [DOI:10.3390/ijms18010008]
7. Yoo HJ, Choi KM. Hepatokines as a Link between Obesity aCardiovascular Diseases. Review. Diabetes Metab J. 2015; 39: 10-15. doi: 10.4093/dmj.2015.39.1.10. [DOI:10.4093/dmj.2015.39.1.10]
8. Sun Q, Cornelis MC, Manson JE, Hu FB. Plasma levels of fetuin-A and hepatic enzymes and risk of type 2 diabetes in women in the U.S. Diabetes. 2013; 62(1): 49-55. doi: 10.2337/db12-0372. [DOI:10.2337/db12-0372]
9. Emoto M, et al. Fetuin-A and atherosclerotic calcified plaque in patients with type 2 diabetes mellitus. Metabolism. 2010; 59(6): 873-8. doi: 10.1016/j.metabol.2009.10.005. [DOI:10.1016/j.metabol.2009.10.005]
10. Sarga L, Nikolett H, Lauren K. Aerobic endurance capacity affects spatial memory
11. and SIRT1 is a potent modulator of 8-oxoguanine repair. Neuroscience. 2013; ;252:326-36. doi: 10.1016/j.neuroscience.2013.08.020. [DOI:10.1016/j.neuroscience.2013.08.020]
12. Zarzuelo MJ, López-Sepúlveda R, Sánchez M, Romero M, Gómez-Guzmán M, Ungvary Z, et al. SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta: implications for vascular aging. Bio chem Pharmacol . 2013; 85(9):1288–1296. [DOI:10.1016/j.bcp.2013.02.015]
13. Cuevas-Ramos D, Almeda-Valdés P, Meza-Arana CE, Brito-Córdova G, Gómez-Pérez FJ, Mehta R, et al. Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLos One. 2012; 7(5): e38022. doi: 10.1371/journal.pone.0038022. [DOI:10.1371/journal.pone.0038022]
14. Hansen JS, Pedersen BK, Xu G, Lehmann R, Weigert C, Plomgaard P. Exercise-Induced Secretion of FGF21 and Follistatin Are Blocked by Pancreatic Clamp and Impaired in Type 2 Diabetes. J Clin Endocrinol Metab. 2016;101(7):2816-25. doi: 10.1210/jc.2016-1681. [DOI:10.1210/jc.2016-1681]
15. Besse-Patin A, Montastier E, Vinel C, Castan-Laurell I, Louche K, Dray C, et al. Effect of endurance training on skeletal muscle myokine expression in obese men: identification of apelin as a novel myokine. Int J obes (Land) 2014; 38(5): 707-13. doi: 10.1038/ijo.2013.158. [DOI:10.1038/ijo.2013.158]
16. Yang SJ, Hong HC, Choi HY, Yoo HJ, Cho GJ, Hwang TG, et al. Effects of a three-month combined exercise programme on fibroblast growth factor 21 and fetuin-A levels and arterial stiffness in obese women. Clin Endocrinol(oxf). 2011; 75(4): 464-9. [DOI:10.1111/j.1365-2265.2011.04078.x]
17. doi: 10.1111/j.1365-2265.2011.04078.x [DOI:10.1111/j.1365-2265.2011.04078.x]
18. Malin S, del Rincon J, Huang H, Kirwan JP. Exercise-induced lowering of fetuin-A may increase hepatic insulin sensitivity. Med Sci Sports Exerc 2014; 46: 2085-2090. doi: 10.1249/MSS.0000000000000338. [DOI:10.1249/MSS.0000000000000338]
19. Schultes B, Frick J, Ernst B, Stefan N, Fritsche A. The effect of 6-weeks of aerobic exercise training on serum fetuin-A levels in non-diabetic obese women. Exp Clin Endocrinol Diabetes. 2010; 118(10): 754-756. [DOI:10.1055/s-0030-1253418]
20. Colberg Sh, Sigal R, Yardly J, Riddell M, dunstan D, Demosey P, et al. Physical activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care. 2016; 39(11): 2065-2079. [DOI:10.2337/dc16-1728]
21. Delevatti RS, Pinho CD, Kanitz AC. Glycemic reductions following waterand and Land - based exercise in patients with type 2 diabetes mellitus. Complement Ther Clin Pract. 2016; 24: 73-7. [DOI:10.1016/j.ctcp.2016.05.008]
22. Huang Ch, Wang T, Tung Y, Lin W. Effect of Exercise Training on Skeletal Muscle SIRT1 and PGC-1α Expression Levels in Rats of Different. Int J Med Sci. Age. 2016; 13(4): 260-270
23. Casuso RA, Martínez A, Hita F, Camiletti D, Aranda P, Martínez E. Quercetin supplementation does not enhance cerebellar mitochondrial biogenesis and oxidative status in exercised rats. Nutr Res. 2015; 35(7): 585-91. [DOI:10.1016/j.nutres.2015.05.007]
24. Marton O, Koltai E, Takeda M, Koch LG, Britton SL. Mitochondrial biogenesisassociated factors underlie the magnitude of response to aerobic endurance training in rats. Pflugers Arch. 2015; 467(4): 779-88. [DOI:10.1007/s00424-014-1554-7]
25. Parvin Farzanegi. The effect of aerobic training on levels of FGF21 in diabetic woman. Indian Journal of Fundamental and Applied Life Sciences. 2015; 4(5): 124-127.
26. Abbasi Daloii A, Maleki Delarestaghi A. The effect of Aerobic exercise on Fibroblast Growth Factor and Adiponectin in obese men. Journal of Sport Biosciences 2017; 9(1): 109-121.
27. Scalzo R, Peltonen G, Giordano G, Binns S, Klochak A, Paris A, et al. Regulators of Human White Adipose Browning: Evidence for Sympathetic Control and Sexual Dimorphic Responses to Sprint Interval Training. PLoS One. 2014; 9(3): e90696 [DOI:10.1371/journal.pone.0090696]
28. Jakob Schiøler Hansen, Bente Klarlund Pedersen, Guowang Xu, Rainer Lehmann, Cora Weigert, Peter Plomgaard. Exercise-Induced Secretion of FGF21 and Follistatin Are Blocked by Pancreatic Clamp and Impaired in Type 2 Diabetes. J Clin Endocrinol Metab. 2016; 101(7): 2816-2825. doi: 10.1210/jc.2016-1681. [DOI:10.1210/jc.2016-1681]
29. Li X, Ge H, Weiszmann J, Hecht R, Li YS, Véniant MM, et al. Inhibition of lipolysis may contribute to the acute regulation of plasma FFA and glucose by FGF21 in mice. FEBS letters 2009; 583(19): 3230-3234. doi: 10.1016/j.febslet.2009.09.012. [DOI:10.1016/j.febslet.2009.09.012]
30. Shenglong Zhu, Lei Ma, Yunzhou Wu, Xianlong Ye, Tianyuan Zhang, Qingyang Zhang, et al. FGF21 treatment ameliorates alcoholic fatty liver through activation of AMPK-SIRT1 pathway. Acta Biochim Biophys Sin (Shanghai). 2014 Dec;46(12):1041-8. doi: 10.1093/abbs/gmu097. [DOI:10.1093/abbs/gmu097]
31. Jensen TE, Richter EA. Regulation of glucose and glycogen metabolism during and after exercise. Journal of Physiology. 2012; 590(5): 1069-1076. doi: 10.1113/jphysiol.2011.224972. [DOI:10.1113/jphysiol.2011.224972]
32. Cantó C, Jiang LQ, Deshmukh AS. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metabolism 2010; 11(3): 213-219. doi: 10.1016/j.cmet.2010.02.006. [DOI:10.1016/j.cmet.2010.02.006]
33. Chau M, Gao J, Yang Q, Zhidan Wu, and Gromada J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK–SIRT1–PGC-1α pathway. Proc Natl Acad Sci U S A 2010; 107(28): 12553–12558. doi: 10.1073/pnas.1006962107. [DOI:10.1073/pnas.1006962107]
34. Nara R, Scherolin O. Treadmill training increases SIRT-1 and PGC-1 α protein levels and AMPK phosphorylation in quadriceps of middle-aged rats in an intensity-dependent manner. Mediators Inflamm. 2014;2014:987017. doi: 10.1155/2014/987017. [DOI:10.1155/2014/987017]
35. Lee S, Norheim F, Gulseth H, Langleite M, Kolnes K, Tangen D, et al. Interaction between plasma fetuin‐A and free fatty acids predicts changes in insulin sensitivity in response to long‐term exercise. Physiol Rep. 2017; 5(5): e13183. doi:10.14814/phy2.13183. [DOI:10.14814/phy2.13183]
36. Salama ME, El-Damarawi MA. Effect of two exercise varieties on fetuin-A plasma level in experimental diabetic nephropathy. Tanta Med J. 2017; 45(1): 21-28. [DOI:10.4103/tmj.tmj_44_16]
37. Hennige AM, Staiger H, Wicke C, Machicao F, Fritsche A, Häring HU, Stefan N. Fetuin A induced cytokine expression and suppresse adipokinectin production. Plos one. 2008; 3: e1765 [DOI:10.1371/journal.pone.0001765]
38. Blumenthal J, Gitterman A, Ryan A, Prio S. Effects of Exercise Training and Weight Loss on Plasma Fetuin-A Levels and Insulin Sensitivity in Overweight Older Men. J Diabetes Res. 2017; 2017: 1492581. doi: 10.1155/2017/1492581. [DOI:10.1155/2017/1492581]
39. Singh M, Sharma PK, Garg VK, Mondal SC, Singh AK, Kumar N. Role of fetuin-A in atherosclerosis associated with diabetic patients. J Pharm Pharmacol. 2012; 64(12): 1703-8. doi: 10.1111/j.2042-7158.2012.01561.x. [DOI:10.1111/j.2042-7158.2012.01561.x]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.