Volume 14, Issue 3 (May-Jun 2020)                   mljgoums 2020, 14(3): 19-25 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eghbali M, Baserisalehi M, Ghane M. Isolation, identification, and antibacterial susceptibility testing of Moraxella catarrhalis isolated from the respiratory system of patients in northern Iran. mljgoums 2020; 14 (3) :19-25
URL: http://mlj.goums.ac.ir/article-1-1222-en.html
1- 1. Department of Microbiology, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran 2. Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
2- Department of Microbiology, Kazeron Branch, Islamic Azad University, Kazeron, Iran. , majidbaserisalehi@gmail.com
3- 4. Department of Microbiology, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.
Abstract:   (5649 Views)
Background and Objectives: Moraxella catarrhalis is considered as an emerging pathogen and a new nosocomial infection agent. This study was conducted to isolate and identify M. catarrhalis from clinical samples (respiratory tracts) and assess them for antimicrobial susceptibility patterns.
      Methods: In total, 280 samples were collected from patients with respiratory tract infection, and 120 samples were obtained from healthy individuals in the control group. The isolates were identified by phenotyping and genotyping methods, and their antibiotic susceptibility was  evaluated using disk diffusion methods. The presence of β-lactamase and efflux pump activity were specified via phenotypic methods. Finally, Bro and acrA genes in the isolates were detected by PCR technique.
      Results: The frequency of this bacterium was 9.64% (27 out of 280) in patients with respiratory tract infection and 4.16% (5 out of 120) in the control group. Although the isolates were resistant to penicillin, they had various responses against other antibiotics. The results obtained from molecular method showed that 90.6% and 84.3% of the isolates possessed Bro and acrA genes, respectively. There was a significant relationship (P<0.05) between the presence of Bro and acrA genes and antibacterial resistance to ampicillin, amoxicillin, cefazolin, cefuroxime, and chloramphenicol.
      Conclusion: Our findings confirmed the existence of M. catarrhalis in patients with respiratory diseases and the high prevalence of antibiotic resistant genes in M. catarrhalis isolates. Therefore, timely diagnosis and successful treatment can play important roles in preventing their spread.
Full-Text [PDF 800 kb]   (918 Downloads)    
Research Article: Original Paper | Subject: bacteriology
Received: 2019/05/31 | Accepted: 2019/11/20 | Published: 2020/04/30 | ePublished: 2020/04/30

References
1. Gupta N, Arora S, Kundra S. M. catarrhalis as a respiratory pathogen. Indian J Pathol Microbiol. 2011; 54(4): 769-71. doi: 10.4103/0377-4929.91496. [Google Scholar]
2. Krishna S, Sagarika S, Jeer M, Surekha YA, Shafiyabi S, Pushpalatha H, et al. Prevalence and Antibiotic Sensitivity Pattern of M. catarrhalis in Patients with Lower Respiratory Tract Infections in a Tertiary Health Care Centre in India. Int J Curr Microbiol App Sci. 2016; 5(6): 72-78. [DOI:10.20546/ijcmas.2016.506.009] [Google Scholar]
3. Earl JP, de Vries SPW, Ahmed A, Powell E, Schultz MP, Hermans PWM, et al. Comparative Genomic Analyses of the M. catarrhalis Sero sensitive and Sero resistant Lineages Demonstrate Their Independent Evolution. Genome Biol. Evol. 2016; 8(4): 955-974. doi: 10.1093/gbe/evw039. [DOI:10.1093/gbe/evw039] [PubMed] [Google Scholar]
4. Liu YL, Xiao M, Cheng JW, Xu HP, Xu ZP, Ye S, et al. M. catarrhalis Macrolide-Resistant Isolates are Highly Concentrated in Two MLST Clonal Complexes-CCN10 and CC363. Front Microbiol. 2017; 8: 201. doi: 10.3389/fmicb.2017.00201. [DOI:10.3389/fmicb.2017.00201] [PubMed] [Google Scholar]
5. Murphy TF, Parameswaran GI. M. catarrhalis, a Human Respiratory Tract Pathogen. Clin Infect Dis. 2009; 49: 124-131. doi: 10.1086/599375. [DOI:10.1086/599375] [PubMed] [Google Scholar]
6. Verhaegh SJ, Saarloos JA, Verbrugh HA, Jaddoe VW, Hof-man A, et al. Determinants of M. catarrhalis colonization in healthy Dutch children during the first 14 months of life. Clin Microbiol Infect. 2010; 16(7): 992-7. doi: 10.1111/j.1469-0691.2009.03008.x. [DOI:10.1111/j.1469-0691.2009.03008.x] [PubMed] [Google Scholar]
7. Ramana BV, Chaudhury A. Antibiotic sensitivity pattern of M. catarrhalis at a tertiary care hospital. International Journal of Pharmacy & Life Sciences. 2012; 3: 1805-1806. [Google Scholar]
8. Bernharda SSV, Aebi C. Molecular pathogenesis of infections caused by M. catarrhalis in children. Swiss Med Wkly. 2012; 142: w13694. doi: 10.4414/smw.2012.13694. [DOI:10.4414/smw.2012.13694] [PubMed] [Google Scholar]
9. Shaikh, S.B.U., Ahmed, Z., Arsalan, S.A. and Shafiq, S. Prevalence and resistance pattern of Moraxella catarrhalis in community-acquired lower respiratory tract infections. Infect Drug Resist. 2015; 8: 263-267. doi: 10.2147/IDR.S84209 [DOI:10.2147/IDR.S84209] [PubMed] [Google Scholar]
10. Sheikh SO, Irfan S, Zafar A. Β-Lactamase production and antimicrobial susceptibility pattern of M. catarrhalis isolates: report from Pakistan. Asian Pacific Journal of Tropical Medicine. 2014; 7: 228-231. [DOI:10.1016/S1995-7645(14)60237-6] [Google Scholar]
11. Verduon CM, KoolsSijmons M, vanderPlas J, Vlooswijk J, Tromp M, Dijk HV, et al. Complement resistant. M. catarrhalis forms a genetically distinct lineage within the species. FEMS Microbiol Lett. 2000; 184(1): 1-8. [DOI:10.1111/j.1574-6968.2000.tb08981.x] [PubMed] [Google Scholar]
12. Bonomo RA, Rice LS. Inhibitor resistance class A beta-lactamases. Frontiers in Bioscience. 2006; 4: 34-41. [DOI:10.2741/A477] [Google Scholar]
13. Spaniol V, Bernhard S, Aebi C. M. catarrhalis AcrAB-OprM Efflux Pump Contributes to Antimicrobial Resistance and is Enhanced during Cold Shock Response. Antimicrob Agents Chemother. 2015; 59(4): 1886-94. doi: 10.1128/AAC.03727-14. [DOI:10.1128/AAC.03727-14] [PubMed] [Google Scholar]
14. Bhattacharyya S, Singh S, Sarfraz A, Jaiswal NK, Kumar R, Kumar A, et al. Study of Antibiogram and Virulence Factors of M. catarrhalis from a Tertiary Care Hospital. Int J Med Res Prof. 2017; 3 (2): 236-38. [Google Scholar]
15. Wayne PA. Clinical and Laboratory standards institute Performance Standards for Antimicrobial Susceptibility Testing Twentieth informational supplement. Clinical and Laboratory standards Institute. 2015; 35(3): 73-128. [Google Scholar]
16. Barrero MAO, Pietralonga PG, Schwarz DGG, Silva A, Paula SO, Moreira MS. Effect of the inhibitors phenylalanine arginyl ßnaphthylamide (PAßN) and 1-(1-naphthylmethyl)-piperazine (NMP) on expression of genes in multidrug efflux systems of Escherichia coli isolates from bovine mastitis. Res Vet Sci. 2014; 97(2):176-81. doi: 10.1016/j.rvsc.2014.05.013. [DOI:10.1016/j.rvsc.2014.05.013] [PubMed] [Google Scholar]
17. Hays JP. M. catarrhalis: A mini review. Journal of Pediatric Infectious Diseases. 2009; 4(3): 211-220. DOI: 10.3233/JPI-2009-0167. [DOI:10.3233/JPI-2009-0167] [Google Scholar]
18. Schmitz FJ, Beeck A, Perdikouli M, Boos M, Mayer S, Scheuring S, et al. Production of BRO β-Lactamases and Resistance to Complement in European M. catarrhalis Isolates. Journal of clinical microbiology. 2002; 40: 1546-1548. doi: 10.1128/JCM.40.4.1546-1548.2002. [DOI:10.1128/JCM.40.4.1546-1548.2002] [PubMed] [Google Scholar]
19. Lalitagauri M, Deshpande H, Sader S, Thomas R, Fritsche R, Jones N. Contemporary Prevalence of BRO β-Lactamases in M. catarrhalis: Report from the SENTRY Antimicrobial Surveillance Program (North America, 1997 to 2004). J Clin Microbiol. 2006; 44(10): 3775-3777. [DOI:10.1128/JCM.00456-06] [PubMed] [Google Scholar]
20. Tamang MD, Makaju RK, Jha BK, Shivananda PG, Bhramadatan KN. Prevalence of M. catarrhalis infections of the lower respiratory tract in elderly patients. Kathmandu Univ Med J. 2005; 3(1): 39-44. [PubMed] [Google Scholar]
21. Anita KB, Fernandez N, Malli CS, Mallya S. The prevalence of M. catarrhalis in lower respiratory tract infections. J Clin Diagn Res. 2011; 5: 240-241. [Google Scholar]
22. Bullard BLS, Lafontaine ER. Hag directly mediates the adherence of M. catarrhalis to human middle ear cells. Infect Immun. 2005; 73(8): 5127-5136. [DOI:10.1128/IAI.73.8.5127-5136.2005] [PubMed] [Google Scholar]
23. Slevogt H, Seybold J, Tiwari KN, Hocke AC, Jonatat C, Dietel S, et al. M. catarrhalis is internalized in respiratory epithelial cells by atrigger-like mechanism and initiatesa TLR2-andpartly NOD1-dependent inflammatory immune response. Cell Micro boil. 2007; 9(3): 694-707. [DOI:10.1111/j.1462-5822.2006.00821.x] [PubMed]
24. Heiniger, NS, Troller R, Vischer M, Aebi C. A reservoir of M. catarrhalis in human pharyngeal lymphoid tissue. J Infect Dis. 2007; 196: 1080-1087. [DOI:10.1086/521194] [PubMed] [Google Scholar]
25. Khoramrooz SS, Emaneini M, Jabalameli F, Aligholi M, Saedi B. Frequency of Alloicoccus otitidis, Streptococcus pneumoniae, M. catarrhalis and Haemophilus infuenzae in children with otitis media with efusion (OME) in Iranian patients. Auris Nasus Larynx. 2012; 39(4): 369-373. [DOI:10.1016/j.anl.2011.07.002] [PubMed] [Google Scholar]
26. Farajzadeh Sheikh A, Ahmadi Kh, Nikakhlagh S. Detection of Streptococcus pneumonia and Moraxella catarrhalis in patients with paranasal chronic sinusitis by polymerase chain reaction method. J Chin Med Assoc. 2016; 79(8): 440-4. doi: 10.1016/j.jcma.2016.03.002. [DOI:10.1016/j.jcma.2016.03.002] [PubMed] [Google Scholar]
27. Sheikhi R, Amin M, Rostami S, Shoja S, Ebrahimi N. Oropharyngeal Colonization with Neisseria lactamica, Other Nonpathogenic Neisseria Species and Moraxella catarrhalis Among Young Healthy Children in Ahvaz, Iran. Jundishapur J Microbiol. 2015; 8(3): 14813. doi: 10.5812/jjm.14813. [DOI:10.5812/jjm.14813] [PubMed] [Google Scholar]
28. Osagie RN, Esumeh FI, Eyaufe AA, Momodu E, Adeleke G. Occurrence of M. catarrhalis amongst Children in a Primary Health Care in Ekpoma Nigeria. American Journal of Research Communication. 2013; 1: 97-101. [Google Scholar]
29. Mazin O, Mohager M, Mogahid M, El Hassan E. Molecular detection of BRO β-lactamase gene of M. catarrhalis isolated from Sudanese patients. Ann Trop Med Public Health. 2013; 6(4): 441-445. [DOI:10.4103/1755-6783.127796] [Google Scholar]
30. Elrhman EMA, Ibrahim AK, Abdelhalim KA. Frequency of M. catarrhalis from Patients with lower respiratory tract infection in Khartoum state, Sudan. World Journal of Pharmaceutical Research. 2015; 4: 2286-2293. [Google Scholar]
31. Jiang LX, Ren HY, Zhou HJ, Zhao SH, Hou BY, Yan JP, et al. Simultaneous Detection of 13 Key Bacterial Respiratory Pathogens by Combination of Multiplex PCR and Capillary Electrophoresis. Biomed Environ Sci. 2017; 30(8): 549-561. [PubMed] [Google Scholar]
32. Hsu SFLY, Chen TL, Siu LK, Hsueh PR, Huang ST. Antimicrobial resistance of M. catarrhalis isolates in Taiwan. J Microbiol Immunol Infect. 2012; 45(2): 134-40. doi: 10.1016/j.jmii.2011.09.004. [DOI:10.1016/j.jmii.2011.09.004] [PubMed] [Google Scholar]
33. Ramadan MO, Ibrahim IS, Shaheen AM, Ali VE. Significance of M. catarrhalis as a causative organism of lower respiratory tract infections. Egyptian Journal of Chest Diseases and Tuberculosis. 2016; 66(3): 459-464. [DOI:10.1016/j.ejcdt.2016.05.011] [Google Scholar]
34. Funaki T, Inoue E, Miyairi I. Clinical characteristics of the patients with bacteremia due to M. catarrhalis in children: a case-control study. BMC Infectious Diseases. 2016; 3: 16-73. [DOI:10.1186/s12879-016-1408-3] [PubMed] [Google Scholar]
35. Gergova R, Markovska R, Mitov I. Antimicrobial resistance and production of beta-lactamases in Bulgarian clinical isolates M. catarrhalis. Annals of Microbiology. 2009; 59: 169-172. [DOI:10.1007/BF03175616] [Google Scholar]
36. Akinjogunla OJ, Eghafona NO. Prevalence, haemolytic activities and fluoroquinolones susceptibility profiles of M. catarrhalis. Nature and Science. 2011; 9: 65‐72. [Google Scholar]
37. Kageto Y, Katsumi A, Ryoichi S. Antimicrobial susceptibility to β-lactam antibiotics and production of BRO β-lactamase in clinical isolates of M. catarrhalis from a Japanese hospital. J Microbiol Immunol Infect. 2017; 50 (3): 386-389. doi: 10.1016/j.jmii.2016.08.003. [DOI:10.1016/j.jmii.2016.08.003] [PubMed] [Google Scholar]
38. Kadry AA1, Fouda SI, Elkhizzi NA, Shibl AM. Correlation between susceptibility and BRO type enzyme of M. catarrhalis strains. Int J Antimicrob Agents. 2003; 22: 532-536. [DOI:10.1016/S0924-8579(03)00158-4] [PubMed] [Google Scholar]
39. Mohager MO, Hassan EIMM, Omer EIFA, Elmekki MA. Molecular detection of BRO β-lactamase gene of M. catarrhalis isolated from Sudanese patients. Annals of Tropical Medicine and Public Health. 2013; 6(4): 441-445. [DOI:10.4103/1755-6783.127796] [Google Scholar]
40. Shi W, Wen D, Chen C, Yuan L, Gao W, Tang P, et al. β-Lactamase production and antibiotic susceptibility pattern of Moraxella catarrhalis isolates collected from two county hospitals in China. BMC Microbiol. 2018; 18(1):1217-1225. doi: 10.1186/s12866-018-1217-5. [DOI:10.1186/s12866-018-1217-5] [PubMed] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.