دوره 7، شماره 2 - ( 4-1398 )                   جلد 7 شماره 2 صفحات 49-60 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Behnampour A, Biglarian A, Bakhshi E. Application of fuzzy logistic regression in modeling the severity of autism spectrum disorder. Jorjani Biomed J. 2019; 7 (2) :49-60
URL: http://goums.ac.ir/jorjanijournal/article-1-657-fa.html
Application of fuzzy logistic regression in modeling the severity of autism spectrum disorder. فصلنامه علمی پژوهشی زیست پزشکی جرجانی. 1398; 7 (2) :49-60

URL: http://goums.ac.ir/jorjanijournal/article-1-657-fa.html


چکیده:   (1623 مشاهده)
Background and objectives: Autism spectrum disorder (ASD) is a childhood neurodevelopmental disorder and according to DSM-5 classification, its severity includes three levels: requiring support, requiring substantial support, and requiring very substantial support. This classification is unclear from a possible perspective and from a fuzzy point of view; it has a degree of uncertainty. The purpose of this study is to predict the severity of autism disorder by fuzzy logistic regression.
Methods: In this cross-sectional study, 22 children with ASD which referred to the rehabilitation centers of Gorgan in 2017 were used as a research sample. Therapist's viewpoint about the severity of the disorder that is measured by linguistic terms (low, moderate, high) was considered as fuzzy output variable. In addition, to determine the prediction model for the severity of autism, a fuzzy logistic regression model was used. In this sense parameters were estimated by least square estimations (LSE) and least absolute deviations (LAD) methods and then the two methods were compared using goodness-of-fit index.
Results: The age of children varied from 6 to 17 years old with mean of 10.44± 3.33 years. Also, the goodness-of-fit index for the model that was estimated by the LAD method was 0.0634, and this value was less than the LSE method (0.1255). The estimated model by the LAD indicates that with the constant of the values of other variables, with each unit increase in the variables of age, male gender, raw score of stereotypical movements, communication and social interaction subscales, possibilistic odds of severity of autism disorder varied about 0.67 (decrease), 0.362 (decrease), 0.098 (increase), 0.019 (increase) and 0.097 (increase) respectively.
Conclusion: The LAD method was better than LSE in parameter estimation. So, the estimated model by this method can be used to predict the severity of autism disorder for new patients who referred to rehabilitation centers and according to predicted severity of the disorder, proper treatments for children can be initiated.
 
متن کامل [PDF 604 kb]   (742 دریافت)    
نوع مقاله: تحقیقی | موضوع مقاله: آمار زیستی
دریافت: 1397/11/18 | پذیرش: 1398/1/21 | انتشار: 1398/4/10

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

کلیه حقوق این وب سایت متعلق به مجله زیست پزشکی جرجانی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2021 CC BY-NC 4.0 | Jorjani Biomedicine Journal

Designed & Developed by : Yektaweb